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ABSTRACT
An increase of the suction applied to a deformable soil may induce shrinkage and desaturation. This makes the
determination of the water retention curve (WRC) of such soils more complex, as one needs to follow simultaneously
the volumetric shrinkage curve (VSC) and the water content.  Descriptive and predictive models can be useful to
assess the behaviour of compressible soils. After reviewing typical results obtained on relatively soft and initially
saturated clayey soils, the authors introduce new equations to describe the VSC. A simplified tree linear segment
representation, inspired by the consolidation theory, is first used.  It is then generalised using a curvilinear equation.
The proposed models describe the VSC in terms of the change of void ratio e with an increase in suction ψ.
Experimental data are used to validate the descriptive capabilities of the VSC models. For predictive purposes,
empirical relationships are proposed to estimate the model parameters from the liquid and plastic limits, solid grain
density, and initial void ratio. The typical results shown here indicate a good agreement between measured and
calculated VSC.

RÉSUMÉ
Une augmentation de la succion appliquée à un sol déformable induit un retrait et une désaturation. La détermination
de la courbe de rétention d'eau (CRE) de tels sols devient complexe car il faut en même temps connaître la courbe
de retrait volumique (CRV). Des modèles descriptifs et prédictifs peuvent utiles pour évaluer le comportement de sols
compressibles. Suite à une analyse de résultats typiques obtenus sur des sols argileux relativement mous,
initialement saturés, les auteurs présentent des équations descriptives de la CRV. Une description simplifiée de la
CRV par trois segments linéaires inspirée de la théorie de consolidation est d’abord utilisée.  Elle est ensuite
généralisée en utilisant une représentation curvilinéaire. Les modèles proposés décrivent la CRV en termes de
réduction de l'indice des vides e avec l'augmentation de la succion ψ. Des données expérimentales sont utilisées pour
valider la capacité de ces modèles à décrire la CRV. Pour des fins de prédiction, des relations empiriques sont
proposées pour estimer les paramètres des modèles à partir des limites de liquidité et de plasticité, de la densité des
particules solides et de l'indice des vides initial. Les résultats types montrés ici indiquent une bonne concordance
entre les CRV mesurées et calculées.

1. INTRODUCTION

Measurement approaches of the water retention curve
(WRC) for incompressible soils are based on the
determination of gravimetric (w) or volumetric (θ) water
content at given suction values (ψ), on sample(s)
submitted to drying or wetting processes, generally for
constant zero total stress. These measurements use
different techniques, described in literature (e.g.,
Fredlund and Rahardjo 1993; Aubertin et al. 1997;
Barbour 1998; Delleur 1998; Delage and Cui, 2000a;
Wilson et al. 2000). For such soils, the void ratio (e)
remains constant during the drying and/or wetting
processes. The degree of saturation (Sr) associated to
measured w or θ can then be easily derived for different
suction values ψ using eq. 1, where Dr is the specific
gravity of the solid particle.
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In the case of compressible (shrinking) soils, a suction
increase may induce desaturation (i.e. reduction of Sr)
and volume change simultaneously. Experimental
procedures to obtain the WRC must thus involve the
measurement of the water content and of the total
specimen volume, for the suction increments. The soil
volume change can be determined by applying
displacement methods based on immersion of the
specimen in a mercury filled cup (e.g., ASTM D427-98;
Silvestri 1994), or in water after the specimen surface
has been sealed with a wax (ASTM D4943-95), or in
toluene (Sibley and Williams 1989). Other types of
measurements of the volume change can also be
performed using alternative techniques, including suction
controlled oedometers (Fredlund and Rahardjo 1993;
Cabral et al. 2004) and retractometers (Braudeau et al.
1999; Geiser et al. 2000). The volume change due to
shrinkage can be represented with different parameters
such as the void ratio e (e.g. Biarez et al. 1987; Delage
and Cui, 2000a), the specific volume (volume of the
sample/masse of the oven dry sample; e.g., Braudeau et
al. 1999; Crescimanno and Provenzano 1999; Chertkov



2000, 2003; Tripathy et al. 2002), or other related
material characteristics. The plot of the volume change
against water content or against suction is usually
designated as the volumetric shrinkage curve (VSC),
although other terms are also sometimes used to
describe such relationships.

A typical VSC defined schematically with the function
e-w is illustrated in Figure 1a (inspired by Biarez et al.
1987; Konrad and Ayad 1997; Tripathy et al. 2002;
Chertkov 2000, 2003; Braudeau and Mohtar 2004).  The
corresponding VSC defined in the e-logψ plane is shown
in Fig. 1b. The related water retention curve(s)
expressed using the w-logψ, θ-logψ, and Sr-logψ
relationships are shown in Fig. 1c.

Three shrinkage phases can generally be distinguished
on a typical VSC drawn from saturation to full dryness,
without external stress applied.  These are: Phase 1
(normal) corresponding to saturated shrinkage; Phase 2
(residual) which combines desaturation and shrinkage;
Phase 3 (no-shrinkage) where the volume is considered
quasi constant (e.g., Haines 1923; Marshall et al. 1996;
Braudeau et al. 1999, Braudeau and Mohtar 2004).

In the normal shrinkage zone (Phase 1), the volume
change equals the volume of water lost, so that the soil
remains saturated (i.e. drainage follows the saturation
line). The transition between Phases 1 and 2 occurs at
the water content wa corresponding to the air entry value
AEV (ψa), when air enters the voids. In the residual zone
(Phase 2), the volume decrease is smaller than the
volume of water loss. This desaturation increases the
resistance of the soil to deformation (e.g. Delage and
Cui, 2000b). The transition between Phases 2 and 3
occurs at the “true” shrinkage limit wes. In Phase 3,
particles are under maximum contact and further volume
change is considered negligible (the void ratio is almost
constant, with e = es); nonetheless, the water content
(and degree of saturation) can further diminish until
complete dryness.

According to Haines (1923) and Marshall et al. (1996),
ψa of compressible clayey soils is typically around 105

cm (i.e. negative pressure close to 104 kPa), while the
shrinkage limit wes is reached at a suction (head) ψes of
about 106 cm. The suction corresponding to complete
dryness takes a value close to 107 cm (Ross et al., 1991;
Fredlund and Xing, 1994). In geotechnical practice, the
shrinkage limit ws (%) is typically defined on the
saturation line as shown on Fig. 1a; it corresponds to
the saturated water content associated to es

(es=Drws/100= Drwes/100Sr,es, where Sr,es is the degree
of saturation at the onset of the no-shrinkage phase).

It is worth mentioning that the shrinkage path for initially
unsaturated materials can be different from that of
saturated soils (e.g., Tripathy 2002, Braudeau and
Mohtar 2004). This added level of complexity will not be
addressed here. Furthermore, in surface soils with an
aggregated structure and dual porosity, an initial phase
(called structural shrinkage) may be observed before

Phase 1 (e.g., Tripathy et al. 2002; Chertkov 2000, 2003;
Braudeau and Mohtar 2004). In this phase, a few large
pores are easily drained, and the decrease in soil
volume is less than the volume of water lost as air enters
these voids. Only the 3 phases identified in Fig. 1 will be
considered in this study.
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Fig 1. Schematic illustration of the shrinkage and
desaturation phases of a compressible soil, shown in
various planes: a) e-w; b) e-logψ; c) WRC expressed as
w-logψ, θ-logψ and Sr-logψ (Adapted from Mbonimpa et
al. 2005).

As illustrated by Fig. 1, the WRC measurement is more
complicated for deformable materials than for
incompressible as the VSC determination is also
involved. In this regard, predictive models may be useful
tools, especially at the preliminary stage of a project
when an estimate of the soil response can provide
insights on the expected results. For that purpose, the



authors have extended the modified Kovács model
developed to predict WRC of stiff soils (Aubertin et al.
2003) to shrinking clayey soils (Mbonimpa et al. 2005).
The extended MK model uses the function e(ψ). It is
thus helpful to have means to estimate, in a simple and
practical manner, the relationship between e and ψ of
compressible soil. This paper introduces simple linear
and non-linear models to describe, and in some cases to
predict, the VSC (e-logψ) of compressible materials. The
proposed model parameters are first obtained by fitting
calculated VSC to experimental data taken from the
literature. For the predictive applications, these
parameters are related to basic geotechnical properties.
The proposed predictive approach is evaluated by
comparing predicted values to measured data. The
paper ends with a short discussion and conclusion.

2. PROPOSED VSC EQUATIONS

2.1 Soils considered in this study

The data needed for the present study are those for
which the tests were performed on relatively soft soils
samples under drainage conditions (from Sr = 100%),
and for which the basic geotechnical parameters were
given. These parameters are required for predictive
applications. The data used here are taken from the
SOILVISION database (Fredlund 1999), from Biarez et
al. (1987) and from Fleureau et al. (1993, 2002). The
data are identified in Table 1; Dr is the relative density of
the solid particles, wL is the liquid limit, wP is the plastic
limit, ws is the shrinkage limit; e0 is the initial void ratio,
and es is the final void ratio on the e(ψ) curve. The
shrinkage limit ws has been obtained from the curve e(w)
using the plot shown in Figure 1a. SOILVISION includes
information on e(w) and w(ψ); the e(ψ) curves have then
been inferred from these relationships.  For the data
taken from Fleureau et al. (1993, 2002) and Biarez et al.
(1987), the values of e(w) and e(ψ) were obtained by
digitizing the published figures.
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Fig. 2.  Description of the e-logψ curve using three linear
segments (TLS) and a curvilinear representation

Experimental results show that the typical VSC,
represented by a e-logψ relationship, has an S shape
that can be described with three linear segments (TLS)

or with an appropriate curvilinear equation (see Fig. 2).
The former representation makes physical interpretation
easier while the latter better reflects the reality of a
continuous transition along the shrinkage path.

2.2 VSC description with three linear segments

This representation is inspired from an idealized
consolidation curve. The void ratio first decreases from
its initial value e0 to eP (at a suction ψp) associated to the
transition point P. The corresponding slope Cψ1 is
typically very small. Beyond eP, shrinkage is more
pronounced and it reduces the void ratio until it reaches
es associated to the end of the residual shrinkage phase,
following the slope Cψ2. With this linear model, the onset
of the no-shrinkage phase appears to occur at suction
ψes-L, which is lower than the actual suction ψes defined in
Fig. 1b. The last stage brings es to the final void ratio
along slope Cψ3 (which is again very small). For practical
applications, it will be assumed that e(ψ) = e0 for 0 ≤ ψ ≤
ψp and e(ψ) = es for ψ ≥ ψs, i.e. Cψ1 = Cψ3 = 0. The VSC
for ψp ≤ ψ ≤ψs follows the slope Cψ ≡ Cψ2, and it can be
defined as:
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2.3 VSC description with continuous function

Various curvilinear continuous mathematical expressions
(similar to those used to describe the WRC for instance)
can be used to describe the VSC. Functions with the
minimum adjustable parameters have been targeted
here. The authors investigations indicate that a good
agreement between measured and calculated values of
e(ψ) can be obtained with the following equation:

[4]
ψα+

−
+=ψ

β1

ee
e)(e So

S

where α and β are model parameters. Parameter α
controls the position at the onset of a significant void
ratio decrease (equivalent to point P) while parameter β
affects the slope of the VSC. This mathematical
formulation has been inspired by the Gardner (1956)
equation for the WRC.

3. APPLICATION OF THE VSC MODELS

In the following paragraph, the models are used to
describe experimental results. Predictive applications
follows with parameter values deduced from basic
geotechnical properties.



Table 1. Samples characteristics and fitted parameters used in this study.
Sample1 Record

or soil
Gs

(-)
wL

(%)
wP

(%)
ws

(%)
e0

(-)
es

(-)
ψp

(cm)
ψes-L

(cm)
Cψ
(-)

α
(-)

β
(-)

1 6042 2.67 78 26 17 0.887 0.460 94 40272 0.162 0.001 0.853
2 6044 2.65 60 27 22 0.838 0.580 32 31435 0.086 0.005 0.751
3 6061 2.64 40 27 18 0.950 0.470 38 24000 0.171 0.002 0.802
4 6065 2.70 75 24 16 0.855 0.411 500 231013 0.167 0.0001 0.940
5 6066 2.83 80 33 20 2.690 0.511 7 100000 0.524 0.028 0.519
6 6068 2.73 51 16 13 1.755 0.370 7 14000 0.419 0.026 0.661
7 6069 2.80 92 26 16 3.000 0.510 9 100000 0.615 0.027 0.621
8 6072 2.69 71 24 16 2.488 0.510 7 13000 0.605 0.035 0.612
9 6073 2.73 64 31 22 2.147 0.593 20 15000 0.540 0.010 0.754

10 6079 2.84 70 38 16 2.390 0.412 10 150000 0.474 0.027 0.527
11 6080 2.77 58 33 26 2.153 0.690 2 7000 0.413 0.059 0.643
12 FoCa clay 2.68 90 35 17 3.632 0.511 3 124097 0.676 0.039 0.501
13 Jossigny loam 2.74 37 18 15 1.268 0.435 9 26300 0.240 0.012 0.716
14 White clay 2.65 60 30 32 1.980 0.850 80 30000 0.439 0.002 0.875
15 Kaolinite 2.65 61 30 29 2.149 0.830 10 27000 0.384 0.006 0.691
16 Loam 2.70 27 20 22 0.798 0.600 4 5170 0.064 0.008 0.948
17 Marl 2.75 36 23 15 1.078 0.430 4 20000 0.175 0.022 0.639

1 Data for samples 1 to 11 are taken from SOILVISION (Fredlund 1999); data for samples 12 to 14 taken from
Fleureau et al. (1993, 2002); data for samples 15 to 17 taken from Biarez et al. (1987).

3.1 Descriptive application

Figure 3 shows typical measured data, in the e-logψ
plane, with fitted curves. These results have been
obtained by using the simplified TLS model (eq. 2 –
assuming Cψ1 = Cψ3 = 0) and the non linear equation
(eq. 4). The fitting procedure has been performed with a
graphical method for the TSL model, and by minimizing
the sum of the squares of the residuals using the solver
of Microsoft Excel® for the curvilinear equation. In all
cases, es values obtained graphically on the e(ψ) curves
were considered. It can be observed that the assumption
Cψ1 = Cψ3 = 0 is in close agreement with the
experimental results. The fitted parameters (ψp, ψes-L and
Cψ for the TLS model and α and β for the curvilinear
equation) are given in Table 1. The value for ψes-L is
mostly comprised between 104 cm and 105 cm. Actual
suction values ψes are comprised between 105 cm and
106 cm, close to the expected value as defined above by
Haines (1923; see also Marshall et al., 1996). On the
other hand, the values for ψp are typically smaller than
100 cm, except for Sample 4 (500 cm). It should be
mentioned that the position of the transition points (P
and S) on the TLS representation are somewhat
subjective, and as a semi-log scale is used, a slight
difference can lead to a significant variation of ψp and
ψes-L (an optimisation procedure could help minimize this
uncertainty). The slope Cψ varies between 0.06 and 0.7.
With the non linear equation, it has been observed that
0.0001 ≤ α ≤ 0.06 and 0.5 ≤ β ≤1.0. The value of α is
inversely proportional to ψP (results not shown here).

3.2 Predictive application

Investigations have been conducted to use the VSC
equations for predictive applications. For that purpose,
the model parameters have been estimated using

empirical correlations based on commonly used
geotechnical properties.

- Parameters es

The void ratio es is related to the shrinkage limit ws

determined using e(w) data obtained by performing
shrinkage limit tests (e.g. ASTM D 427-98, ASTM D
4943-02). It is recognized however that the experimental
determination of ws is not always very accurate (Holtz
and Kovacs 1981). A practical alternative is to estimate
ws. This parameter can be obtained indirectly from the
well known Plasticity Chart using the A and U lines and
an empirical graphical method proposed by Casagrande
(in Holtz and Kovacs 1981). A more representative
correlation was established by the authors based on the
linear relationship between the shrinkage index IS (= wL -
ws) and the plasticity index IP (= wL - wP) ; this correlation
is shown in Figure 4. The shrinkage limit ws can hence
be estimated (for wL ≤ 5.6 wP approximately) as:
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Fig.4. Relationship between the shrinkage index IS and
the plasticity index IP (using data from Table 1, and
additional data taken from Fleureau et al. 1993, 2002)
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Fig. 3. Typical results for the fitting of measured data using the TLS and curvilinear equations for the VSC

It is worth mentioning here that the void ratio es determined
on the e(w) curves (with es=Drws/100) and e(ψ) curves
should theoretically be similar, but that almost negligible
differences have been observed, probably due to the data
treatment (i.e. e(ψ) calculated from e(w) and w(ψ) for the
data taken from SoilVision and obtained by digitizing for the
remaining data).

- Parameters ψp, ψes-L and Cψ in the TLS equation
The most representative relationships obtained to correlate
suction ψes-L at the shrinkage limit and ψP at point P to
relevant geotechnical properties are the followings:
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In eq. 7, eL represents the void ratio at the liquid limit wL

under saturated state (eL=DrwL/100).

Comparison between ψes-L and ψP determined
experimentally and estimated with eq. 6 and 7 shows the
scatter of data on Fig. 5 and 6.  As will be shown below,
these are satisfactory results as other sources of uncertainty
prevail when looking at predictive applications.

- Parameter Cψ  defined in the e-logψ plane plays a similar
role as the compressibility index Cc commonly used in
theory of consolidation (in the e-logσ′ plane). Several
empirical expressions have been proposed to estimate Cc

using basic geotechnical properties such as the liquid limit
wL and the initial void ratio e0 (e.g., Bowles 1984; Sridharan
and Nagaraj 2000). Along the same lines, the best
estimation of Cψ (for the available data) was obtained with
the following empirical expression (see Figure 7):
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Fig. 5. Comparison between experimental and estimated
(eq. 6) values ψes-L for samples identified in Table 1
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index Cψ for the samples identified in Table 1

As es depends on ws, which in turn has been linked to wL

and wp, Cψ can also be related to wL and wP. Theoretically,
Cψ = 0 when e0 = es. With the proposed empirical equation,
Cψ = 0 when e0 ≈ 1.1 es); this represents an acceptable
deviation for practical applications.

- Parameters α and β in the curvilinear equation
The authors investigation has lead to the following empirical
equations to estimate parameters α and β:
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These relationships confirm that the value of α is inversely
proportional to ψP (see eq. 7), while that of β can be related
to Cψ (see eq. 8). Parameters α and β determined from the
experimental data and estimated using the equations 9 and
10 are compared in Fig. 8 and 9. Although the estimated α
and β values are not very accurate for all samples, the
results can be considered acceptable for the present
preliminary investigations (as will be shown by the VSC
predictions made below) .
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- Prediction of VSC
The estimation of the parameters for the two models, with
the empirical correlations introduced above (equations 5 to
10), can in principle be used to predict the VSC. However,
the predictions obtained with the TLS model are still
inconclusive, and work is still underway to improve the
accuracy of the predictions.  This is partly due to imprecision
in the definition of parameter Cψ calculated with eq. 3 using
values ψes-L and ψP estimated from eq. 6 and 7; this value of
the VSC slope is sometimes quite different than the value
Cψ  ensuing from eq. 8. Due to this still unresolved
inconsistency, the TSL equations remain in their descriptive
format, until more work is done to find the proper solution. At
this point, the non linear function (eq. 4) is better suited to
predict the VSC, using es, α and β derived from eq. 5, 9 and
10 respectively. Measured and predicted VSC are
compared in Fig. 10 for some of the data identified in Table
1. The agreement is good in the most cases (Fig. 10a-c),
but it can be less satisfactory in a few cases (Fig. 10d). It
can be seen that although the correlations for predicting
parameters α and β are not very strong, they are adequate
to obtain satisfactory predictions of the VSC.  These
predictions are used in a companion paper to extend the MK
model, to estimate the WRC of compressible soil using
basic geotechnical properties (Mbonimpa et al. 2005).
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Fig. 10. Typical results for ccomparisons between measured and predicted VSC

4. DISCUSSION AND CONCLUSION

In this paper, the volumetric shrinkage curve defined by the
e(ψ) function has been fitted to a three linear segments
(TLS) model (with 3 parameters ψP, mψ, and ψes-L) and to a
continuous curvilinear equation (with 2 parameters α and β).
The VSC model parameters obtained from the fitting
procedures have been correlated to basic physical soil
properties including the initial void ratio eo, the solid grain
density Dr and the Atterberg (wL, wP, wS) limits. The
proposed empirical relationships for the curvilinear model
allow predictive applications of the VSC. This constitutes a
practical method to estimate the VSC from basic physical
properties for soft and initially saturated deformable soils.

The VSC of compressible clayey soils are however
governed by many factors including texture, mineralogy,
adsorbed cation species, cementing agents, structure and
density, stress path and history, etc. (e.g., Marshall et al.
1996; Parker et al. 1997). In the proposed predictive model
application, these factors are globally taken into account
indirectly, by using the Atterberg (wL, wP, wS) limits. The
relationships proposed here for predicting the VSC should
thus be used with cautions.

Also, the models presented here have been defined for
shrinkage patterns similar to the one shown in Fig. 1, where
the saturated (normal) shrinkage follows the saturation line.
Results with a structural shrinkage zone or for an initial
degree of saturation less than 100% have not been
considered; these will be the subject of later studies. Other
aspects will also be investigated including the relative
contribution of osmotic and matric suction. At the same time,
work is also progressing on the suction induced volume
change of low plasticity soils such as loose sands, silts and
tailings.

More data are necessary for further validation and for
developing even more general expressions. A systematic
experimental study of undisturbed, compacted, and slurried
samples of soils is under way for that purpose.
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